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Abstract

Within the framework of the gauge-invariant, but path-dependent, variables
formalism, we study the connection between scale symmetry breaking and
confinement in three-dimensional gluodynamics. We explicitly show that the
static potential profile contains a linear potential, leading to the confinement of
static charges. Also, we establish a new type of equivalence among different
three-dimensional effective theories.

PACS numbers: 12.38.Aw, 14.80Mz

1. Introduction

One of the long-standing issues in non-Abelian gauge theories is a quantitative description of
confinement. In this context, it may be recalled that phenomenological models have been of
considerable importance in our present understanding of the physics of confinement, and can
be considered as effective theories of QCD. One of these, which is the dual superconductivity
picture of QCD [1], has probably enjoyed the greatest popularity. In this picture, the
crucial feature is the condensation of topological defects originated from quantum fluctuations
(monopoles). Accordingly, the color electric flux linking quarks is squeezed into strings
(flux tubes), and the non-vanishing string tension represents the proportionality constant in
the linear, quark confining, potential. Lattice calculations have confirmed this picture by
showing the formation of tubes of gluonic fields connecting colored charges [2]. Recently,
’t Hooft [3] has suggested a new approach to the confinement problem which includes a linear
term in the dielectric field that appears in the energy density. It should be highlighted at this
point that QCD, at the classical level, possesses scale invariance which is broken by quantum
effects. Interestingly, these effects can be described by formulating classical gluodynamics in
a curved spacetime with non-vanishing cosmological constant. More precisely, an effective
low-energy Lagrangian for gluodynamics which describes semi-classical vacuum fluctuations
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of gluon field at large distances is obtained [4], where a dilaton coupling to gauge fields plays
an essential role in this development.

On the other hand, in recent times the connection between scale symmetry breaking and
confinement in terms of the gauge-invariant but path-dependent variables formalism has been
developed [5, 6]. In particular, for a phenomenological model which contains both a Yang–
Mills and a Born–Infeld term, we have shown the appearance of a Cornell-like potential which
satisfies the ’t Hooft basic criterion, after spontaneous breaking of scale invariance in both
Abelian and non-Abelian cases [5]. It is worthy noting here that similar results have been
obtained in the context of gluodynamics in a curved spacetime [7]. In fact, we have shown
the vital role played by the massive dilaton field in triggering a linear potential, leading to
the confinement of static charges. Accordingly, this picture may be considered as equivalent
to that based on the condensation of topological defects. In this way, we have established a
new correspondence between these two non-Abelian effective theories. The present work is
aimed at studying the stability of the above scenario for the three-dimensional case. The main
purpose here is to reexamine the effects of the dilaton field on a physical observable, and to
check if a linearly increasing gauge potential is still present whenever we go over into three
dimensions.

Before going ahead, we would like to recall a number of motivations to undertake our
study (2 + 1) D. In this spacetime, Yang–Mills theories are super-renormalizable and mass
for the gauge fields are not in conflict with gauge symmetry [8]. Indeed, topologically
massive Yang–Mills theories are a very rich field of investigation and it has been shown that
Yang–Mills–Chern–Simons models are actually ultraviolet finite [9]. Yet, (2 + 1) D theories
may be adopted to describe the high-temperature limit of models in (3 + 1) D [10]. Planar
gauge theories are also of interesting to probe low-dimensional condensed matter systems,
such as the description of bosonic collective excitations (like spin or pairing fluctuations)
by means of effective gauge theories and high-TC superconductivity, for which planarity is
a very good approximation [11]. We should also mention that (2 + 1) D theories, specially
Yang–Mills theories, are very relevant for a reliable comparison between results coming
from the continuum and lattice calculations, for much larger lattices can be implemented in
three spacetime dimensions [12]. Most recently, 3D physics has been raising a great deal
of interest in connection with branes activity; in this context, issues like self-duality [13]
and new possibilities for supersymmetry breaking as induced by 3-branes [14] are of special
relevance. In addition, the study of the quark–antiquark potential for some non-Abelian
(2 + 1)-dimensional Yang–Mills theories has been considered in [15, 16].

In order to accomplish the purpose of probing different aspects of three-dimensional field-
theoretic models, we shall work out the static potential for three-dimensional gluodynamics in
curved spacetime along the lines of [5, 7]. Our treatment is manifestly gauge invariant for the
static potential. This analysis gives us an opportunity to compare our procedure with related
three-dimensional models. As will be seen, the three-dimensional gluodynamics version is
equivalent to a Lorentz- and CPT-violating Maxwell–Chern–Simons model, while a three-
dimensional phenomenological model which includes a Yang–Mills and a Born–Infeld term is
equivalent to the above models in the short-distance regime. At this point, we should recall that
in recent times much attention has been devoted to the concept of duality by its unifying role
in physics. As is well known, duality refers to an equivalence between two or more quantum
field theories whose corresponding classical theories are different. Consequently, one obtains
more information about a theory than is possible by considering a single description. So in
this work we are primarily concerned with the physical content associated with duality. In
fact, one can verify the existence of duality between two or more apparently different theories
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by computing physical quantities in these theories. If the answers agree the theories should
be dual.

This approach is the main focus of our paper. In this sense it should be understood our
equivalence among theories. One important advantage of this approach is that it allows us to
describe different models in an unified way. The point we wish to emphasize, however, is that
we once again corroborate that confinement arises as an Abelian effect. In general, this picture
agrees qualitatively with that of Luscher [17]. More recently, it has been related to relativistic
membrane dynamics in [18], and implemented through the Abelian projection method in [19].

2. Interaction energy

We turn now to the problem of obtaining the interaction energy between static point-like
sources for the three models we shall consider in this work. With this purpose, we shall
compute the expectation value of the energy operator, H, in the physical state, |�〉, describing
the sources, which we will denote by 〈H 〉�. We begin by summarizing very quickly the dilaton
effective Lagrangian coupled to gluodynamics, and introduce some notation that is needed for
our subsequent work. We start from the four-dimensional spacetime Lagrangian density [4],

L(3+1) = |εV |
m2

1

2
eχ/2(∂μχ)2 + |εV | eχ (1 − χ) − eχ (1 − χ)

1

4
Fa

μνF
aμν, (1)

where the real scalar field (dilaton) χ , of mass m, describes quantum fluctuations, and −|εV |
is the vacuum energy density. Let us also mention here that the stable minimum is in χ = 0,
according to the work of [20]. Following our earlier procedure [7], we shall now consider the
expansion near χ = 0. In such a case, expression (1) becomes

L(3+1)
eff = −1

4
Fa

μν

(
1 +

m2

�(3+1)

)
Faμν +

m2

32|εV |
(
Fa

μν

)2 1

�(3+1)

(
Fa

μν

)2
+ |εV |, (2)

where �(3+1) stands for the usual D’Alembertian in four dimensions. It is advisable to
comment on the gauge invariance of the action above, after the χ -field has been integrated
out. By expanding χ around χ = 0, and keeping only the quadratic and linear terms in the
χ -fluctuation, the standard functional integration procedure yields expression (2). Note that
the χ -field is a gauge singlet, upon integration over it one should not break gauge invariance.
Indeed, the combination − 1

4Fa
μνF

aμν appears taken at the same spacetime point and the
operator �−1

(3+1) acts entirely on the product Fa
μνF

aμν . Therefore, the gauge transformations
of the field strengths are taken at the very same spacetime point, ensuring then the gauge
invariance of the action terms. Here we would mention that, in view of the term∫

d4x d4y
δ(4)(x − y)

�
(x)

(3+1)

F a
μν(x)F aμν(x), (3)

(as before, �(x)

(3+1) indicates a D’Alembertian on the x-coordinates) the integral over y yields an
infrared singularity, which may readily be seen if we go over into momentum space. However,
at this point, we anticipate ( and it shall soon became clearer in this Section) that what we
have in mind is to write an effective (2 + 1)-dimensional non-Abelian model where one
spacelike dimension is to be compactified. As it is going to become explicit same steps below,
the compactfication radius introduces a non-trivial pole in momentum space and removes the
undesirable infrared divergence we are talking about. So, we can finally state that gauge
symmetry is not lost, for Fa

μνF
aμν is all taken at the same spacetime point, and the potential

infrared singularity it displays is actually not present in the effective model we shall be dealing
with to discuss confinement in (2 + 1) dimensions.
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Next, in order to linearize this theory, we introduce the auxiliary field, φ. Then, we write

L(3+1)
eff = −1

4
Fa

μν

(
1 +

m2

�(3+1)

)
Faμν +

1

2
(∂μφ)2 − 1

4

m√|εV |φ
(
Fa

μν

)2
+ |εV |. (4)

Once again, by expanding about φ = φ0, we then get

L(3+1)
eff = −1

4
Fa

μν

1

ε

(
1 +

εm2

�(3+1)

)
Faμν + |εV |, (5)

where 1
ε

≡ 1 + m√|εV |φ0. Notwithstanding, in order to set-up the context for our discussion, it

is useful to recall that the field configuration φ0 must be constant, so that the terms in φ̇2 and
(∇φ)2 do not add positive contributions to the energy. Actually, we must have that φ0 is zero.
To understand why φ0 must be zero, we examine its contribution to the density energy, 
00;
with spacetime independent φ0, we have


00 = 1

2

m

|εV |φ0(E
a · Ea + Ba · Ba), (6)

where Ea and Ba are respectively the electric and magnetic fields. To minimize such a term,
we see that φ0 must be zero and the minimum of energy turns out to be −|εV |, according to
what discussed in [4]. In such a case, expression (5) reduces to

Leff = −1

4
Fa

μν

(
1 +

m2

�

)
Faμν + |εV |. (7)

Though, for practical purposes we could have initiated our discussion from equation (7), we
believe it is worthwhile to go back to the master action, the one given in equation (1), to
present our chain of considerations on the approximations which allow us to integrate over
the χ -fluctuations. Also, in order to better clarify the question that the gauge invariance is not
broken upon the χ -integration, we believe it is suitable to show how the field strengths come
out taken at the same spacetime point.

Our immediate undertaking is to obtain the corresponding effective Lagrangian density
in (2 + 1) dimensions. In other terms, this means that we have to compactify one spacelike
dimension. In order to do so, we employ a sort of Kaluza–Klein approach [21], where the
limit of infinite compactification radius is obtained by means of a self-consistency condition,
as we shall see below. According to this idea, one writes

L(2+1)
eff = −1

4
Fa

μν

∑
n

(
1 +

m2

�(2+1) + a2

)
Faμν + |εV |, (8)

with a2 ≡ n2/R2, and R is the compactification radius. We see, therefore, that the novel
feature of the present theory is the presence of the a2-term. Incidentally, it is of interest to
note that equation (8) shows up that the infrared divergences we have mentioned previously
are avoided in virtue of the a2-term in the denominator. Such a question motivates us to
study the role of the dilaton field in the three-dimensional case. Having characterized the
new effective Lagrangian, we can now compute the interaction energy for a single mode in
equation (8). To this end, we shall first examine the Hamiltonian framework for this theory.
The canonical momenta are �aμ = −(

1 + m2

�+a2

)
Fa0μ, which results in the usual primary

constraint, �a0 = 0, and �ai = −(
1 + m2

�+a2

)
Fa0i . Here, we have simplified our notation by

setting �(2+1) ≡ �. This allows us to write the following canonical Hamiltonian:

HC =
∫

d2x

{
1

2
�ai

(
1 +

m2

� + a2

)−1

�ai +
1

4
Fa

ij

(
1 +

m2

� + a2

)
Faij

}

+
∫

d2x
{
�ai

(
∂iA

a
0 + gf abcAc

0A
b
i

)}
. (9)
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The secondary constraint generated by the time preservation of the primary constraint
�a0 ≈ 0 is now �a(1)(x) ≡ ∂i�

ai + gf abcAbi�c
i ≈ 0. It is straightforward to check

that there are no more constraints and that the above constraints are first class. The
corresponding extended Hamiltonian (that generates translations in time) is given by H =
HC +

∫
dx

(
ca

0(x)�a
0(x) + ca

1(x)�a(1)(x)
)
, where ca

0(x) and ca
1(x) are arbitrary multipliers.

Since �0a = 0 always, and Ȧa
0(x) = [

Aa
0(x),H

] = ca
0(x), the dynamical variables A0a and

their conjugate �0a may now be eliminated from the theory. We therefore drop the term in
�0a and define a new arbitrary coefficient ca(x) = ca

1(x) − Aa
0(x). The Hamiltonian then

reduces to

H =
∫

d2x

{
1

2
�a

(
1 +

m2

� + a2

)−1

�a +
1

4
Fa

ij

(
1 +

m2

� + a2

)
Faij

}

+
∫

d2x
{
ca(x)

(
∂i�

ai + gf abcAbi�c
i

)}
. (10)

In order to break the gauge freedom of the theory, we introduce a gauge-fixing condition such
that the full set of constraints becomes second class, so we choose

�a(2)(x) =
∫ 1

0
dλ(x − ξ)iA

(a)
i (ξ + λ(x − ξ)) ≈ 0, (11)

where λ (0 � λ � 1) is the parameter describing the spacelike straight path xi = ξ i+λ(x − ξ)i ,
on a fixed time slice. Here, ξ is a fixed point (reference point), and there is no essential loss
of generality if we restrict our considerations to ξ i = 0. It immediately follows that the only
non-trivial Dirac bracket is{
Aa

i (x),�bj (y)
}∗ = δabδ

j

i δ
(2)(x − y) −

∫ 1

0
dλ

(
δab ∂

∂xi
− gf abcAc

i (x)

)
xj δ(2)(λx − y).

(12)

Now, we move on to compute the interaction energy between point-like sources in the
theory under consideration, where a fermion is localized at the origin 0 and an antifermion
at y. As already mentioned, to do this we shall calculate the expectation value of the energy
operator, H , in the physical state, |�〉. From our above discussion, we see that 〈H 〉� reads

〈H 〉� = 1

2
tr〈�|

∫
d2x

{
�a

(
1 +

m2

� + a2

)−1

�a

}
|�〉

+
1

4
tr〈�|

∫
d2xF a

ij

(
1 +

m2

� + a2

)
Faij |�〉. (13)

At this stage, we recall that the physical state can be written as

|�〉 = ψ(y)U(y, 0)ψ(0)|0〉, (14)

where U(y, 0) ≡ P exp
(
ig

∫ y

0
dziAa

i (z)T
a
)
. As before, the line integral is along a spacelike

path on a fixed time slice, P is the path-ordering prescription and |0〉 is the physical vacuum
state. From the foregoing Hamiltonian structure, and since the fermions are taken to be
infinitely massive (static), we then get

〈H 〉� = 〈H 〉0 + V (1) + V (2), (15)

where 〈H 〉0 = 〈0|H |0〉. The V (1) and V (2) terms are given by

V (1) = 1

2
tr〈�|

∫
d2x�ai ∇2

∇2 − M2
�ai |�〉, (16)

5
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V (2) = −a2

2
tr〈�|

∫
d2x�ai 1

∇2 − M2
�ai |�〉, (17)

with M2 ≡ a2 + m2. From (12), one distinguishes an Abelian part (proportional to CF ) and a
non-Abelian part (proportional to the combination CF CA) for both V (1) and V (2). After some
lengthy, but straightforward manipulations, we find that, unlike to the (3 + 1)-dimensional
case, the non-Abelian contribution to the V (2) term is zero. This then implies that, at leading
order in g, the V (1) and V (2) terms are essentially Abelian. As a consequence, (16) and (17)
take the form

V (1) = −g2

2

1

2
tr(T aT a)

∫
d2x

∫ y

0

dz′
iδ

(2)(x − z′)
∇2

x

∇2
x − M2

∫ y

0

dziδ
(2)(x − z), (18)

V (2) = g2

2

a2

2
tr(T aT a)

∫
d2x

∫ y

0

dz′
iδ

(2)(x − z′)
1

∇2
x − M2

∫ y

0

dziδ(2)(x − z). (19)

According to our earlier procedure [22], we find that the potential for two opposite charges
located at 0 and y becomes

V = − g2

2π
CF K0(ML) +

g2

4
CF

a2

M
L, (20)

where |y| ≡ L, tr(T aT a) = CF and K0(ML) is a modified Bessel function. Expression (20)
immediately shows that a linearly increasing potential is still present in the three-dimensional
case, corroborating the key role played by the dilaton field. Interestingly, it is observed that this
is exactly the result obtained for D = 3 models of antisymmetric tensor fields that results from
the condensation of topological defects as a consequence of the Julia–Toulouse mechanism
[22]. In this context, it may be recalled that the existence of a confining phase for a continuum
three-dimensional Abelian U(1) gauge theory was first found by Polyakov [23], by including
the effects due to the compactness of U(1) group. We further note that for the zero mode case
(a = 0), the confining term disappears in (20). However, from (8) we must sum over all the
modes in (20). Note that the expression for the coefficient of the linear potential is given by

σ = g2

4
CF

1

R

∑
n

n2

√
n2 + m2R2

. (21)

In the limit R → ∞, we can see that the contributions from the low n modes are automatically
suppressed. Only the higher modes (mR ∼ n) are responsible for the finite value of σ , namely
σ0 = 3

8CF g2m. Therefore, according to expression (20) the linear piece of the potential stands
and its slope is given by σ0.

3. Related models

Now, in order to check the consistency of our procedure, it is instructive to compare our
result (20) with related three-dimensional models. To do this, we shall begin by recalling
the phenomenological model studied in [5, 6, 24] which contains both a Yang–Mills and a
Born–Infeld term,

L(2+1)
eff = −1

4
Fa

μνF
aμν +

M

2

√
−Fa

μνF
aμν. (22)

As was explained in [5, 6], the constant M spontaneously breaks the scale invariance. Recalling
again that, by imposing spherical symmetry, the interaction energy can be exactly determined.
Then, the Lagrangian density (22) becomes

L(2+1)
eff = −2πr

{
1

4V
Fa

μνF
aμν +

M2

4

V

V − 1

}
, (23)

6
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where V is an auxiliary field. Here μ, ν = 0, 1, where x1 ≡ r = |x|. We further observe that
the quantization of this theory can be done in a similar manner to that in [5, 6]. This leads to
the expectation value

〈H 〉� = tr〈�|
∫

d2x

(
�ai�ai

4πx
+

|M|√
2

√
�ai�ai

)
|�〉 + tr〈�|

∫
d2x

1

4
Fa

ijF
aij |�〉. (24)

Once again exploiting the previous procedure leading to (20), we find that

V = g2

4π
CF ln(ηL) +

|M|g√
2

tr(v1a e1T a)L, (25)

where η is a massive cutoff and, e1 is a unit vector starting at 0 and ending at y. We further note
that, similarly to the previous case, confinement arose as an Abelian effect. Mention should
be made, at this point, to the results obtained in [25, 26] for a (2 + 1)-dimensional SU(N)

Yang–Mills theory

V (L) = g2CF

2π
log(g2L) +

7

64π
g4CF CAL, (26)

where CF and CA are the Casimir group factors. Hence, we see that the result (25) agrees with
(26). Let us mention here that, in order to handle the square root in expression (24), we have
written �ai = va�ai , where va is a constant vector in color space [6]. In this way, both color
and Lorentz symmetries have been explicitly broken. In order to understand this connection
between confinement and nonconservation of the Lorentz symmetry, we now examine a three-
dimensional Lorentz and CPT violating Maxwell–Chern–Simons theory [27]. We also point
out that this model was obtained after a reduction to (2 + 1) dimensions of an Abelian gauge
model with nonconservation of the Lorentz and CPT symmetries [28]. Thus, we have

L = −1

4
F 2

μν +
1

2
∂μϕ∂μϕ − 1

2
M2

Aϕ2 +
s

2
εμνλA

μ∂νAλ − ϕεμνλv
μ∂νAλ, (27)

where ϕ is a scalar field and vμ is a constant vector. Integrating over ϕ, we get

L = −1

4
F 2

μν +
1

8
vνλFνλ

1

� + M2
A

vγβFγβ, (28)

where we have defined vνλ ≡ εμνλvμ. According to our earlier procedure, the expectation
value takes the form

〈H 〉� = 〈�|
∫

d2x

{
1

2
�i ∇2

∇2 − M
2
A

�i

}
|�〉 − M2

A

2
〈�|

∫
d2x

{
�i 1

∇2 − M
2
A

�i

}
|�〉,

(29)

where M
2
A ≡ M2

A + ṽ2. As a consequence, the static potential is given by [22]

V = − g2

2π
CF Ko(MAL) +

g2M2
ACF

4MA

L. (30)

The above potential profile is analogous to the one encountered in our previous analysis for
gluodynamics in curved spacetime (20).

4. Final remarks

To conclude, the above connections are of interest from the point of view of providing
unifications among diverse models. More interestingly, it was shown that our result (20)

7
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agrees with that of the condensation of topological defects as a consequence of the Julia–
Toulouse mechanism. However, although both approaches lead to confinement, the above
analysis reveals that the mechanism of obtaining a linear potential is quite different. We stress
here the role played by dilaton in yielding confinement: its mass contribute linearly to the
string tension. We also draw the attention to the fact that the higher modes are the responsible
for the non-trivial value of the string tension. Our explicit calculation shows that the low n
modes are decoupled in the limit R going to infinity. It would be interesting to employ this
analysis to fit with results coming from lattice calculations.
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